pa———_—

W
TRANSPORTABILITY, DISTRIBUTABILITY, AND REHOSTING EXPERIENCE WITH A
KERNEL OPERATING SYSTEM INTERFACE SET

F. C. Blumberg, A. Reedy, and E. Yodis
Planning Research Corporation
1500 Planning Research Drive

McLean, Virginia 22102

INTRODUCTION

For the past two years, PRC has been transporting and installing a software
engineering environment framework, the Automated Product Control Environment
(APCE), at a number of PRC and government sites on a variety of different hardware.
The APCE was designed using a layered architecture which is based on a
standardized set of interfaces to host system services. This interface set, called the
APCE Interface Set (AIS), was designed to support many of the same goals as the
Common Ada™' Programming Support Environment (APSE) Interface Set (CAIS):
transportability of programs; interoperability of data; and distributability of the
environment processes and data. However, the evolution of the AlS has been quite
different than that of the CAIS. The AIS was designed to support a specific set of

lifecycle functions and to provide maximum performance on a wide variety of operating
systems.

The APCE was developed to provide support for the full software lifecycle. Specific
requirements of the APCE design included: automation of labor intensive
administrative and logistical tasks; freedom for project team members to use existing
tools; maximum transpontability for APCE programs, interoperability of APCE database
data, and distributability of both processes and data; and maximum performance on a
wide variety of operating systems. The functions supported by the APCE include:
configuration management for lifecycle products; traceability; change and release
control; project control and reporting; management for all levels of testing including
integration and system testing; and support for standards enforcement. The AIS
design is critical in supplying transportability, interoperability, and distributability. The
AlS design is also critical in providing the basis tor APCE performancs.

This paper gives a brief description of the APCE and AlS, a comparison of the AIS and
CAIS both in terms of functionality and of philosophy and approach, and a
presentation of PRC's experience in rehosting the AIS and transporting APCE
programs and project data. Conclusions are drawn from this experience with respect
to both the CAIS efforts and the Space Station plans.

1Ada™ is a registered trademark of the U.S. Government Ada Joint Program Office.

D.2.6.1

o Syo-2/
..N89-16319 Ji

R /

7

:93
e

ENVIRONMENT FUNCTIONS

Tha APCE has been designed based on a separation of concerns between the
functionality of the environment framework or architecture and the functionality
of tools. The environmant provides control, coordination, and enforcement of
standards and policy and acts as repository for information (including software
litecycle products). The tools assist the project members in the actual creation
or modification of the products (software and associated documentation and
lifecycle products).

The APCE supports a software lifecycle process paradigm. The software
lifecycle is viewed as a series of development or maintenance projects. Project
members fall into three board categories: managers, developers, and testers.
Developers include all project members who create or modity lifecycle products:
requirements analysts, designers, coders, etc. Testers include the traditional
categories of configuration management and quality assurance personnel and
personnel involved in product reviews and audits. Projects have phases which
can be defined in terms of the products developed during each phase. The
APCE requires a testing process for the products of each phase. The paradigm
is illustrated in Figure 1 which uses Mil-STD-2167 phases and products as an
example. The APCE is configurable for different phases and products as well
as for different methods of integrating products (software or documents) from
components.

The functions provided by the APCE framework include:

0 configuration management of software, documentation, and test
procedures;

0 automated status reporting and tracking of product components,
work packages, and changes;

o] maintenance of traceability from requirements through development
to code;

o automated test bed generation and support for testing from unit
testing through system testing:

o0 maintenance of project database;

o automated integration and release control for products;

o enforcement of selected standards and procedures through testing;
o project specific environment configuration.

The user interface consists of a set of menus for the major subsystems. The
functions provided by the five major subsystems are summarized below.

D.2.6.2

"

A0N3IND3IS M3IIAIH aNV NOILVIN3IWNOOAa goa 30dv :t 34NOI4

D.2.6.3

ORIINAL FANE =
OF POCR auaLITY

o

Generation Subsystem: The generation subsystem allows selected privileged
users to configure the APCE to the specific project in terms of user groups and
organization, work packages and schedule, project phases, products, and
product integration structure. The APCE can be reconfigured to reflect changes
to the project structure and organization as needed. The generation subsystem
uses this information to organize the project database.

Development Subsystem: The development sunsystem allows developers to
select the data or products associated with their task arid ‘. sturn thair finished
products back into the database when they &-e - ady ‘or testing. The
developers can use the software tools 2w it yir host system or
workstation to work on the products. The curre .t w65 .t . the APCE does not
directly control the use of these tools.

Test Subsystem: The test subsystem sunports the testers in the building,
execution, and reporting of the product tests. The test subsystem allows the
testers to create test procedures, which are then managed by the APCE. The
APCE will build test beds and integrate product components for the testers, who
will then execute tests. The testing process provides the methods for
enforcement of standards and policies. The testers report the test results
through the test subsystem. Testers are also responsible for system releass in
the APCE paradigm and the test subsystem performs this function.

Change Contro! Subsystem: The change control subsystem allows managers
. to enter change requests into the system and to define stop dates for release
suppon.

Repont Subsystem: The report subsystem allows managers and other APCE
users to get reponts on the current status ot changes, test procedures, and
releases. It also gives reports on project status by task or by product
component. Additional reports provides impact analysis for proposed changes
and other traceability information.

ENVIRONMENT GOA
The goals of the APCE design are:

o to provide management and control for the full software lifecycle
process;

0 to automate the labor intensive administrative and logistical
overhead functions;

o to allow full use of existing hardware, operating systems, file
management/DBMS, and communication resources.

The last goal implies a series of subgoals. An environment should be
distributable across heterogeneous oparating system configurations,
heterogeneous file management/DBMS facilities and use the available
communications facilities as well as heterogeneous hardware configurations.

o 0264

ORIGINAL PACE 'S
OF POOR QUALITY

The contro! framework must be easily transpontable to new hardware and host
systems at reasonable cost. The environment database, including the lifecycle
products and their relationships and attributes, must be easily moved between
environment instances. There must be no performance penalties for using the
environment. It must cooperate at some level with existing operating systems to
take advantage of their security and performance features. Finally, the
environment must allow the use of existing software tools and allow flexibility for
retooling as necessary.

AOLE OF THE APCE INTERFACE SET

The basic architecture of the APCE is best described as "Stoneman inspired but
data coupled”. The system is layered as illustrated by Figure 2. The host
system (s) provide basic services such as operating system services, file
management system/access mechanism or database management system,
access controls, and communications mechanisms as neaeded for the
configuration. The communications facilities are needed if distribution,
workstations, or reamote test beds are desired. The software engineering
environment instance based on the APCE is layered on top of these services.
The instance provides users with project specific tools and procedures which
will usually exercise the host services directly and the APCE major subsystems
which exercise the host services through the APCE Interface Set (AIS).

Since the APCE major subsystems use AIS calls, the APCE is transported to a
new hardware/OS/DBMS configuration by rehosting the AIS. Thus, the AIS
provides the Kernel interface described by Stoneman and supports the goal of
distribution. Since all database accesses must be made through the AlS, the
AIS also supports the interoperability of project data.

IMPLEMEN IQON PHI H

The AIS design reflects the implementation philosophy of the APCE as a whole.
The architecture of the APCE is data coupled. That is, the APCE subsystems do
not interface directly withi each other; rather, they intarface via the AIS to the
project database. The APCE adopts an open system approach iowards the use
of third party tools. The APCE controls lifecycle products which are entered into
the database through user interaction with APCE subsystems. Thus, there are
no constraints on the tools used to develop the products. For maximum
performance, the AIS is designed to function in conjunction with a modern
operating system rather than on a bare machine. Tools do not have to be
rehosted to the AlS in order to be used.

The AIS was developed by defining a set of transportability rules
that provide the maximum independence for applicaiions (tools, programs, etc.)
from the run time environment. For maximum transportability, it was
determined that the application must have a logical view of the opera’iny
services, the database services, communications services and the data it uses.
The industry is evolving toward this conclusion, however, only a step at a time.

D.2.6.5

ORIZINAL PAZE IS
OF POCR QUALITY

PROCS., TOOLS

\ SEE

HOST
O/S, DBMS, & COMMS,
S/IW & HIW
APCE INSTALLATION NO INTERFACE
CAPABILITIES ACROSS THIS LINE

FIGURE 2: APCE STATIC VIEW

. D266

As an example, currently UNIX™2 (s considered transportable and it does
provide hardware independence. Howsver, it does not provide application
independence any more than any other operating system. Accepting a

operating system as the basis for transportability provides the application :
highly constrained set of system services, database services, and
communication services which may adversely affect the applications
performance. Therefore a set of logical service interfaces was implemented that
can be mapped to any operating system, file management/database
management system and communication protocols.

This AIS implementation has been proven transportable over a wide range of
operating systems, file management/database management systems, and
hardware. The AIS design approach assumes that the host system has been
developed by the vendor to take full advantage of the hardware features of the
computer. The host system should provide performance achievable onl.
through intimate study of the hardware system. The AlS takes advantage of tt
host system performance and does not try to duplicate it. The performance
the AIS should be the same as that of the services supplied by the host systen

The AIS assumes that the following features are supplied by the host system:

o file management system/access mechanisms or databas
management system;

0 access controls;
o command processor with command script feature;

0 communications mechanism (e.g. VAX™3 DECnet) between host(s)/
workstations(s)/targets(s) it distribution or remote workstations or
remote test beds are desired.

CAIS/AIS COMPARISON

The CAIS had no impact on the APCE development, however both the CAIS
and the AIS had similar goals. The intent of both interfaces sets was to achieve
transportability of tools between environments and to achieve interoperability of
data between environments. The CAIS was in response to a need in the DoD
for cost reduction and commonality of tools for software development. The
same requirement fostered the AIS developed within PRC. PRC has many
software development contracts running concurrently, and each contract has
different required hardware, tools, and methods. Therefore, PRC requires an
environment that is adaptable, transportable and allows interoperability of data
and excellent performance on any host system.

The AIS strategy is based on a layering of system services rather than on a
specific system service interface model (such as the node mode! of the CAIS).

2UNIX™ is a registered trader ark of Bell Laboratories.
3VAX™ is a registered trademark of Digital Equipment Corporation.

D.2.6.7

ORIGINAL PAGE IS
OF POOR QUALITY

The APCE software is based on an interface into which the host system
services that satisfy the intertace specifications are mapped. The AIS design is
based on the expected availability of certain host system services. If a service is
not directly available, then extra layers of sottware which provide the needed
enhancement are created below the interface layer to satisty the requirement.

Both the CAIS and the AlS attacked the problem at the interface layer between
operating system services and the application programs. See Figure 3,
AIS/CAIS Comparison, for AIS/CAIS comparison. As the diagram illustrates,
the AIS provides services at a slightly higher level of abstractness than the
CAIS. In addition, the AIS already has additional interfaces operational (DBMS,
Communications) that the CAIS has not implemented as can be seen in Figure
4, CAIS/AIS Major Functions. The CAIS also requires a signiticantly greater
number of functions primary because of the node management requirement.
The AIS terminal I/O implementation currently only handles form management
functions, and theretore does not provide as rich a set of features as the CAIS
terminal I/O provides.

The primary difference between the AIS and the CAIS is the concept of the
node model. The node model provides a method of organizing-files, directories,
devices, queues, and processes into a form that can be manipulated by any
APSE tool on any host that implements the CAIS. The node model is similar to
the implicit node model within the UNIX™ operating system with some
extensions. The AIS embraces the concept that applications (programs, tools)
require only a logical view of the services. Therefore, the intertace functions
should be mapped into the existing system services providing these
capabilities.

The AIS provides only the logical view of the system services to the application
which accomplishes two goals, total application independence and improved
performance. Figure 5, CAIS/AIS Implemantation Differences, illustrates each
implementation.

Application independence is attained because dependence on structural or
physical implementation of each service has been removed from the
applications domain. This has not been attained in the CAIS because each
application has knowledge of the node mcdel and therefore any change to the
node mode! will require a change to all applications dependent upon that
structural knowledge.

The direct mapping of AIS services to system services enables an AlS
implementation to operate as efficiently its host system. The CAIS, however,
supaerimposed a control structure (the node model} on top of existing services
that may lim:t performance on a given CAIS implementation.

D268

EXPAND OVER

LIMITS OF THE FUNCTIONALITY REQUIRED EXPAND OVER
TIME IN THE PROBLEM DOMAIN TIME
< >
INCREASING
APPLICATION
CURRENT APPLICATION SOFTWARE SPECIFICITY
INCREASING <4—— IDEALLY, THE
DEGREE OF IS i INTERFACE
ABSTRACTNESS ssissas: < LAYER IS AS
FROM MACHKINE A THIN AS
SPECIFICITY POSSIBLE FOR
SYSTEM SERVICES PORTABILITY
OPERATING SYSTEM
/ .
(0/S, DBMS, COMM.) INCREASING
IMPLEMENTATION
SPECIFICITY
CURKRENT HARDWARE
4

IDEALLY, THE INTERFACE LAYER IS JUST WIDE
ENOUQGH TO ACHIEVE THE DESIRED
FUNCTIONALITY AND MAXIMUM PORTABILITY

FIGURE 3: AIS/CAIS COMPARISON

D.2.6.9

SNOILONNS HOrvW SIvV/SIVD

‘v 3HNOH

GL1 SGE VLOL
9¢ 98 S31L71N
62 pajuswajdwi JoN panquisig
papiaoid waiskg bunesad(150K A ade|
vi 901t jeuluna |
S e SWE8Q/ssao0y 314
1Nd1NO/1NdNI
L€ pajuawajdw) JoN painquisig
st z¢ 1S0H
SS300Y4d
hm:mm.%m%mﬂmﬂoww (luawabeueyy apoN)
Aq Ayuasayp paysydwosoe 1994

aJe suonouNy asay] "INON

IN3IWIOVNVIN W3LSAS

SNOILONNd HOrvw
Siv

SNOILDONNd HOrvw
SIVD

D.26.10

S3ON3HY344ia

NOILVINIGWIIdWI SIV/SIVD S 3HNDIY

JAVAMAAVYH

NOILYIJITddV/100L

TAVMAYVH

NOILYIDIT1ddV/1001

D.26.11

EXPERIENCE TO DATE

The APCE is currently available on six different computer systems:
VAX/IVMS™4, ROLM/AOS.VS, IBM/MVS™S and VM, and Intel 310 with
XENIX™8, APCE processes can be distributed to the Macintosh™7 and soon to
the 1BM PC. The rehosting process for the AlS takes approximately 2 calendar
months for a mainframe and 1 month for a mini- or micro-computer. Figure 6,
Current AIS Rehosts, illustrates the current systems the APCE is available on
and the time it took to accomplish this, both in months and staft months.

APCE transportability has been attained using the AIS and a 'C' compiler. All
APCE framework applications were designed using Ada™ PDL and
implemented in 'C'. This was done because the Ada compilers were not
available on all the hosts targeted for the APCE. The use of 'C' has not been
without problems. Current implementations are using five (5) different 'C’
compilers and as each new compiler has been introduced a 'C' subset has
been defined. All APCE applications must be normalized to any new subset.
This has entailed a five to ten percent code modification for each new subsst.
However, all new applications use the subset and are completely transportable.
Because PRC must validate each 'C' compiler used for APCE code, the APCE
will be recoded in Ada™ when validated compilers are available.

CONCLUSIONS

The APCE has the advantage that it can be installed in an existing configuration
with minimal distruption of the current way of doing business. It provides a clear
transition path into a better disciplined engineering process and allows new
advances in automated tools to be incorporated. It does not, however, shield
the users from a need to understand the native operating system or tool
command language. This is not viewed as a disadvantage at this time since
standardization of these features does not seem to be possible. Premature
standardization of these features by an environment may ensure its technical
obsolescence or, at best, enforce a delay while new tools are rewritten or
rehosted. Such standardization is also not possible for a software house which
works with a wide client base with widely differing requirements and standards
for their software development and maintenance projects.

The APCE also does not provide the tight integration of tools. The user is still
responsible for ensuring that the output of one tool is suitably moditied to be
acceptable as input for the next. This is one of the areas in which future work
needs to be done to relieve the users of the more clerical types of work.

4VMS™ is a registered trademark of Digital Equipment Corporation.
SIBM/MVS™ is a ragistered trademark of International Business Machines, Inc.
8XENIX™ is a registered trademark of Microsoft Corporation.

7Macintoch™ is a registered trademark of Apple Computer, Inc.

D.26.12

B

1SOH3Y Siv IN344ny 9 B E

YIwow yeis Syuopy gy yoojuroepw

SUIUOW yEIS ¢ Sywow ¢ SWOMA wai
Syon yeis 2y Syiuop gz SAW wea
SUIUOW yElS G Syop gy XIN3X 01€ 131INI
SYIWON yeIS ¢ SUluop 2°y SNSOV 008 3SW wjoy

SHINOW INIL
d4vis 3INA3HIS

1SOH3Yy

D.2.6.13

The APCE framework provides significant advantages and can be used by a
project without new hardware or significant retooling. It provides an immediate
benefit without locking out future advances in software tools and techniques by
managing the process and products rather than focusing on tools. The APCE
provides a different approach to the software engineering environment problem.

PRC has been successful in rehosting the APCE to six different operating
systems, with 4 different file management/database management systems that
use 2 different sets ot communication services without affecting the APCE
applications. Since these ditferent APCE Instances can exchange project data
and any APCE application is transportable between APCE instances, the AIS
attains true application Independence.

The benefits of using an AIS like Interface opens the options for the
Space Station Software Support Environment (SSE) configurations.
No longer constrained to only hardware independence by opserating
system transportability; now a truly heterogeneous SSE can be configured.
This environment will be able to take advantage of all the required
technology while maintaining a consistent single environment through the
SSE applications (tools and framework). The SSE will be truly evolvable
since host services are divorced from the SSE itself therefore allowing new
services (O/S, DBMS, communication and hardware) to be introduced and

obsolete services to be retired without disruption to operations.

D.2.6.14

